convesion de números decimales a binarios
2. Código binario, decimal
|
De decimal a binario
Para hacer la conversión de decimal a binario, hay que ir dividiendo el número decimal entre dos y anotar en una columna a la derecha el resto (un 0 si el resultado de la división es par y un 1 si es impar).
La lista de ceros y unos leídos de abajo a arriba es el resultado.
Procedimiento: - Dividir entre 2 sucesivamente - Apuntar el resultado y el resto de cada operación - Apuntar a lista de ceros y unos de abajo a arriba
Ejemplo: vamos a pasar a binario 7910
79 1 (impar). Dividimos entre dos: 39 1 (impar). Dividimos entre dos: 19 1 (impar). Dividimos entre dos: 9 1 (impar). Dividimos entre dos: 4 0 (par). Dividimos entre dos: 2 0 (par). Dividimos entre dos: 1 1 (impar).Por tanto, 7910 = 10011112
2. Código binario y decimal
|
Sistema hexadecimal
Otro código que se usa con cierta frecuencia es el hexadecimal, es decir, en base dieciséis.
Consiste en utilizar las letras A, B, C, D, E y F para representar los números del diez al quince, mientras que para el dieciséis emplearemos el 1 y el 0.
3E16 = 3 · 16 + 14 = 6210
La razón para el uso del sistema hexadecimal es que su conversión a binario o la conversión de binario a hexadecimal es muy simple, puesto que, al ser dieciséis igual a dos elevado a cuatro, cuatro números binarios componen un número hexadecimal.
No obstante en esta quincena no trabajaremos las conversiones entre el hexadecimal y otros sistemas.
|
|
|
|
|
Dec | Hez | Binario |
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
2
|
2
|
0
|
0
|
1
|
0
|
3
|
3
|
0
|
0
|
1
|
1
|
4
|
4
|
0
|
1
|
0
|
0
|
5
|
5
|
0
|
1
|
0
|
1
|
6
|
6
|
0
|
1
|
1
|
0
|
7
|
7
|
0
|
1
|
1
|
1
|
8
|
8
|
1
|
0
|
0
|
0
|
9
|
9
|
1
|
0
|
0
|
1
|
10
|
A
|
1
|
0
|
1
|
0
|
11
|
B
|
1
|
0
|
1
|
1
|
12
|
C
|
1
|
1
|
0
|
0
|
13
|
D
|
1
|
1
|
0
|
1
|
14
|
E
|
1
|
1
|
1
|
0
|
15
|
F
|
1
|
1
|
1
|
1
|
|
No hay comentarios:
Publicar un comentario